The Kinetic Energy of Austin Dillon

Someone asked in the comments how much kinetic energy Austin Dillon had when he hit the catchfence at Daytona. I don’t know exactly how fast he was going  (probably was somewhere around 180 to 200 mph), so I figured I’d just make a graph and include a couple reference points in terms…

Daytona, Catchfences and Flying Cars

Track barriers originally were erected to keep cars separated from spectators. In addition to concrete walls to prevent the cars from driving off track, debris-spewing accidents necessitated fencing to contain airborne objects.

Catchfences should have the same properties as walls, but they can’t block the view. Chain link fence is a good compromise: It’s cheap, plentiful, easy to put up and surprisingly strong given its high visibility.

Chain-link fabric is an elastic metal mesh. It can give in two ways: gentle forces cause the mesh to deform. The diamonds stretch out of shape, but when the force is removed, the fabric springs back to its original shape. The fence can also deform by stretching the wires that make up the mesh. A large-enough force will break the wire entirely.

Racing without Friction

Daytona is an enormous, sweeping track. Two-and-a-half miles, 31-degree banking and corner radii of a thousand feet. The infield by itself is 180 acres. If you’ve ever been there (or Talladega), it really does take your breath away when you first enter. Now, bigger tracks (or rather, tracks with bigger turns) automatically…

%d bloggers like this: