Why Drying Tracks Takes So Long

This is a major revision of a post that originally appeared on the now-defunct stockcarscience.com on 4/18/10.

Why does it takes so long for a track to dry?  Why does humid weather make track drying take even longer?

Air is a mix of gas molecules:  mostly (78%) nitrogen, about 21% oxygen, the rest misc. gases.  The composition is pretty uniform with the exception of how much water is in the air.   The absolute humidity is the amount of water in some chosen volume of air, for example, how much water vapor is in one cubic meter of air.  Air can only hold so much water vapor and that amount depends on the temperature and pressure.  Dry air would be no ounces of water in a cubic foot of air.  If the vapor is saturated at 30 degrees centigrade (86 degrees Fahrenheit), then the amount of water could be up to three one-hundredths of an ounce of water per cubic foot.

The mechanisms we use to get rid of water on the track are evaporation and possibly boiling.  Evaporation is the same mechanism we use to dry dishes, or even ourselves when we get out a pool and just let the sun dry us.  Evaporation is a liquid changing into a gas.  Boiling is also changing a liquid from a vapor to a gas, but there’s a difference.  Evaporation happens at the surface of a water drop.  Only the outermost few water molecules change from liquid to gas.  Boiling affects the bulk of the water drop.


Regardless of whether we’re talking evaporation or boiling, the water on the track doesn’t exist in a vacuum.  There’s that water vapor in the air.

Nature likes equilibrium.  Equilibrium is when things are equal and concentration is one property that can be equal.  If you pour a glass of red dye into a fish tank full of clear water, the red dye molecules will spread out and uniformly distribute themselves throughout the fish tank.  (Don’t try this if there are fish in the tank, please…)

So we have water molecules in the water drop – a lot of water molecules – and water molecules in the air.  The concentration of water molecules in the air is smaller than the concentration of molecules in the water droplet, but it can vary depending on how humid it is.  The picture below schematically shows three situations in which there are increasing amounts of water vapor in the air surrounding the water drop. The darker the green, the higher the concentration of water molecules.

Nature likes equilibrium, so it would like to have the same concentration of water molecules everywhere.  The rate at which it can move water molecules from the water drop to the air is proportional to the difference in concentrations.

If you have really dry air, there is a big difference in concentrations, and the water from the droplet moves into the air faster.  Have you ever hung your swimsuit out to dry on the balcony of a Florida hotel in July?  It takes forever to dry because the air is so moist.  There isn’t a huge difference between the concentration of water in the air and the concentration of water in the water drop.  If it were relatively dry and we had a rainfall, the track would dry much more quickly than it would with the current conditions:  the humid air is already pretty saturated – relative humidity is how close we are to totally saturated and the numbers have been around 90%.  100% relative humidity means that you absolutely can’t put any more water vapor in the air, so it would take a very, very long time to dry the track.

Jet dryers are literally jet engines that speed up evaporation by just heating the crap out of the water sitting on the track.  The temperature of the combustion fuel is on the order of 1100 degrees F, but it cools pretty quickly as it leaves the dryer (that’s why the jets are so close to the track surface.)  If you have eight jet dryers, each operating for 50 minutes on 175 gallons of fuel and it takes 150 minutes to dry the track, we’re talking about 4200 gallons of jet fuel.


In my next post, I’ll explain how the Air Titan system works and why it should be a huge improvement over jet dryers.

1 Comment

  1. Always wondered why the jet dryers didn’t have some sort of low profile box like where the Air Titan nozzles reside that would help hold the heat an extra second or two. Or even just spread out the blast so more of it made contact with the asphalt. I know it would be a bit of a trick engineering wise to handle the temperatures so you didn’t melt the box or the pavement but that’s why we have engineers. 😉

1 Trackback / Pingback

  1. How Tracks Take and Lose Rubber – Building Speed

Leave a Reply

This site uses Akismet to reduce spam. Learn how your comment data is processed.